COURSE OUTLINE

	COURSE OUTLINE		
(1) GENERAL SCHOOL	School of Engineering]
ACADEMIC UNIT	School of Engineering	Engineering	
LEVEL OF STUDIES	Informatics and Computer Engineering Undergraduate		
COURSE CODE	Ondergraduate	SEMESTER 6 ^{tt}	h
		SEMESTER 0	
COURSE TITLE	Distributed Systems		
INDEPENDENT TEACHI			
if credits are awarded for separate			
e.g. lectures, laboratory exercise		TEACHING	CREDITS
awarded for the whole of the cours hours and the tot		HOURS	
		4	5
		4	5
Add rows if necessary. The organisa	ation of teaching and the		
teaching methods used are describe			
COURSE TYPE	Specialised general knowle	dae skills develo	nment
general background,			pinene
special background, specialised			
general knowledge, skills			
development			
PREREQUISITE COURSES:	Computer Programming		
LANGUAGE OF INSTRUCTION	Greek		
and EXAMINATIONS:			
IS THE COURSE OFFERED TO	Yes (in English)		
ERASMUS STUDENTS			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/	courses/CS157	/
(2) LEARNING OUTCOMES			
Learning outcomes			
The course learning outcomes, spec			
level, which the students will acquir	re with the successful compl	etion of the course	e are described.
Consult Appendix A		1	
Description of the level of learning Ouglifications Engravements of the			ording to the
Qualifications Framework of theDescriptors for Levels 6, 7 & 8 or			Lifolong
Learning and Appendix B	i the European Quanneation	IS FIAIIIEWOIK IOI	Lifelong
 Guidelines for writing Learning 	Outcomes		
• Guidennes for writing Learning	outcomes		
The course aims to introduce the ba	sic concents of distributed r	processing the pri	ncinles and
elements of distributed systems so			
and how to effectively utilize the se			
Upon successful completion of the o			
• will be able to describe the bas		system	
• will have understood the basic			chronization
and communication used in m		5	
• will have become acquainted v	with the techniques of alloca	tion of resources,	data and tasks
in computing systems that work together over a network, and the necessary mechanisms of			
synchronization and control of the communication			
will have an appropriate theory			
requirements of modern trend	ls in the design, developmen	t and support of d	listributed
systems and applications.			
General Competences			
Taking into consideration the gener			
these appear in the Diploma Supple	ment and appear below), at	which of the follo	wing does the
course aim?		1	
Search for, analysis and synthesis o	r data Project planning	and management	

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism

necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive thinking
Working in an international environment	
Working in an interdisciplinary	Others
environment	
Production of new research ideas	

- Search for, analysis and synthesis of data and information, using the necessary technologies
 Autonomous work
- Autonomous v Team weath
- Team work
- Adaptation to new situations
- Work in an interdisciplinary environment
- Generating new research ideas
- Promotion of free, creative and inductive thinking

(3) SYLLABUS

Theory:

- Basic Concepts of Distributed Systems, Distributed Processing, Middleware, Middleware Services
- Organization of Distributed Systems, Client-Server Model (client-server), Peer-to-Peer Systems (P2P systems)
- Distributed Systems Communication, Remote Procedure Call, Remote Objects, Remote Method Call, Message-Oriented Communication, Stream-Oriented Communication
- Event Scheduling, Synchronization, Logical Clocks, Leader Election Algorithms, Mutual Exclusion Algorithms, Distributed Transactions
- Fault Tolerance, Failure Models, Failure Masking through Redundancy
- Agreement in Faulty Distributed Systems, Distributed Commitment, Fault Recovery
- Distributed File Systems, Name and Directory Services
- Computing in a cluster environment (cluster computing). System software, network communication requirements, task scheduling, programming techniques and tools, etc.
- Introduction to Cloud Computing (definitions, models, services, the MapReduce model).
- Lab:

The client-server communication model (internet domain sockets). Middleware - Unix RPC / JRPC / Java RMI / CORBA / XML RPC. HTCondor and Hadoop/MapReduce.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face. Use of distance learning (if required)		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	Use of ICT in Course Teaching and Laboratory Education,		
COMMUNICATIONS TECHNOLOGY	Use of ICT in Communication with Students		
	Post course material on the University's e-learning		
Use of ICT in teaching, laboratory	platform (e-class).		
education, communication with	Use of email and e-class in communication with students.		
students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	26	
teaching are described in detail.	Problem Solving in Class	13	
Lectures, seminars, laboratory	Laboratory Education	13	
practice, fieldwork, study and	Lab exercises	20	
analysis of bibliography, tutorials,	Non-guided study	53	
placements, clinical practice, art	Course total	125	
workshop, interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			

according to the principles of the ECTS	
EVALUATIONGraDescription of the evaluationprocedureEval	hal Grade = (70% * Grade of the Theory_Part) + (30% * ade of the Laboratory Part) aluation Process of Theory Part: Final written exam at e end of the semester
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice labo questionnaires, short-answer questions, open-ended questions, problem solving, written work, The	aluation Process of Laboratory Part: Preparation of boratory exercises / assignments and oral or written amination e evaluation process is disclosed to the students in ss and online, via e-class.

(5) ATTACHED BIBLIOGRAPHY

1. Van Steen M., and Tanenbaum A.S., Distributed Systems, 3rd ed., distributed-systems.net, 2017 2. Κάβουρας Ι.Κ., Μήλης Ι.Ζ., Ξυλωμένος Γ.Β., Ρουκουνάκη Α.Α., Κατανεμημένα Συστήματα με Java, 3η έκδοση, Εκδόσεις Κλειδάριθμος, 2011.

3. Coulouris G., Dollimore J., Kindberg T., Blair G., Distributed Systems, Concepts and Design, 5th ed., Addison-Wesley, 2011.

4. Kai Hwang, Jack Dongarra, and Geoffrey Fox, Distributed and Cloud Computing, Morgan Kaufmann, 2011.

5. Lynch N.A., Distributed Algorithms, Morgan Kaufmann, 1997.

6. Tel G., Introduction to Distributed Algorithms, 2nd ed., Cambridge University Press, 2001.

7. Attiya H., Welch J., Distributed Computing Fundamentals, Simulations, and Advanced Topics,2nd ed., McGraw-Hill, 2004.

8. Brose G., Java Programming with CORBA: Advanced Techniques for Building Distributed Applications, Wiley, 2001.

9. Tom White, Hadoop: The Definitive Guide, 4th Edition, O'Reilly Media, 2015.

10. William Grosso, Java RMI: Designing & Building Distributed Applications, 1st edition, O'Reilly Media, 2011.