STOCHASTIC AND NON LINEAR SYSTEMS

1. GENERAL				
SCHOOL OF	ENGINEERING			
DEPARTMENT OF	INFORMATICS AND COMPUTER ENGINEERING			
LEVEL OF EDUCATION	UNDERGRADUATE			
COURSE CODE	ICE-8206	SEMESTER OF STUDIES 8°		
COURSE TITLE	STOCHASTIC AND NON LINEAR SYSTEMS			
INDEPENDENT TEACHING ACTIVI	ГІЕЅ			
in case the credits are awarded in separat	te parts of the course e.g. WEEKLY ECTS			
Lectures, Laboratory Exercises, etc. If the	credits are awarded HOURS OF CREDITS			
and the total number of credits	TEACHING			
	Locturos 2			
		Lectures	2	
Practice -Exercises			2	
Add rows if needed. The teaching organization and teaching - methods used are described in detail in 4.		4	5	
COURSE TYPE	Επιστημονικής Περιοχής			
Background, General Knowledge, Scientific				
Area, Skills Development				
PREREQUISITE COURSES:	None			
LANGUAGE OF TEACHING AND	Greek			
EXAMS :				
ERASMUS STUDENTS	No			
ONLINE COURSE (URL)				
(if available)				
(II available)				

2. LEARNING OUTCOMES

Learning outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course according to the Qualifications Framework of the European Higher Education Area
- Descriptive Indicators Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Summary Guide for writing Learning Outcomes

The purpose of the course is the acquisition of theoretical and applied science skills in the field (A) of computer programming for (A1) development of statistical time series models (A2) Chaos and Long Memory Systems analysis, (A3) use of ARIMA and ARMA models, (d) analysis of Non-Linear time series of Systems and (A4) use of methods for modeling the trends of the corresponding time series, as well as in the field (B) of Stochastic Systems through (B1) creation and development of analytical and computational Stochastic Models, (B2) development of innovative Stochastic Model simulation techniques and (B3) development and use of Stochastic Model simulation software.

Upon successful completion of the course the student will be able to:

- Mention the difference between Model and Simulation
- Demonstrate knowledge and critical understanding of Dynamic Systems Programming
- Demonstrate knowledge and critical understanding of the main properties of ARMA, and ARIMA models.
- They use least squares, maximum likelihood, analysis of variance (ANOVA) and regression methods on dynamic time series of systems in relation to contextual data.
- Distinguish time series trends of dynamic systems with statistical models.
- Develop methods used to produce forecasts.

- Describe basic nonlinear time series models of dynamical systems.
- Develop key points of fractal theory.
- Define the term long-memory.
- Define Hurst and Lyapunov exponents.
- They use the spectral density function and the periodogram for the time-space spectral analysis of dynamical systems.
- Apply R/S, R-L and DFA techniques to time series of dynamical systems.
- They apply non-linear analyzes with the lumping technique and the moving window technique.
- Apply Fourier & Wavelets analysis methods to detect power law behavior.
- To create synthetic time series for control of dynamic systems.
- Describe topics related to Support Vector Machines (SVM).
- They describe the stochastic Monte Carlo method.
- Distinguish and classify the parameters of stochastic systems to create Models.
- They describe the implementation steps of two Monte-Carlo algorithms for calculating p.
- They define the fundamental parts for the Monte-Carlo simulation of transport of particles (particles) of dynamic stochastic systems.

General Abilities

Taking into account the general skills that the graduate must have acquired (as they are listed in the Diploma Supplement and are listed below), which of them is intended for the course ?.

Search, analysis and synthesis of data and information,	Project design and management
using the necessary technologies	Respect for diversity and multiculturalism
Adaptation to new situations	Respect for the natural environment
Decision making	Demonstration of social, professional and moral responsibility
Autonomous work	and sensitivity in gender issues
Teamwork	Exercise criticism and self-criticism
Working in an international environment	Promoting free, creative and inductive thinking
Work in an interdisciplinary environment	
Production of new research ideas	
A	

• Autonomous Work

- Teamwork
- Analysis and synthesis of data and information, using a computer
- Promotion of inductive thinking
- Making Decisions
- Time management
- Working with deadlines

3. COURSE CONTENT

Course Outline

Introduction. Model Creation (Standards) and Simulation. System analyzing and classification. Detailed Models and Simulation Models. Model types and simulation types. Programming with computers – Platforms for use. Static time series models. Probability models. Persistency, Antipersistency, Random-walk – Random processes. Hilbert transform and Autocorrelation. ARMA and ARIMA models.

Fractal theory. Long-memory. Hurst and Lyapunov exponents. Spectral density function, Periodogram, Time-space spectral analysis. Lumping and moving window techniques. Nonlinear models. R/S, R-L, DFA analysis. Fourier Analysis & Wavelets. Power law. Synthetic and natural time series. Time Series Modelling. Monte Carlo analysis. Stochastic systems and stochastic processes. Monte Carlo method. Monte-Carlo code development. EGSnrcMP and GATE/GEANT4 platforms. Numerical and computational methods. Validity and Validation.

Content:

Introduction. Statistical methods for developing time series models of Dynamic Systems. Analysis of Probability Models. Persistence-Antipersistence and Random-walk. Hilbert Transform and Autocorrelation. ARMA and ARIMA models. Introduction to fractal theory. Long-memory Dynamic Systems. Hurst and Lyapunov exponents. Spectral density function, Periodogram, Time-space spectral analysis of Dynamical Systems. Lumping and moving window techniques. R/S, R-L, DFA analysis. Fourier & Wavelets analysis in power law. Development of synthetic time series of Dynamic Systems. for the artificial control of decision-making systems. Decision making and Time Series Modeling of Dynamic Systems. with Support Vector Machines (SVM) methods. Time Series Modeling of Dynamical Systems with Monte Carlo Analysis. Introduction to the Monte-Carlo method. A hit-or-miss calculation problem. Buffon's pin. Markov Chains, Central Limit Theorem, Chebyshev's Inequality, Law of Large Numbers. Monte Carlo variance reduction techniques. Russian Roulette. Monte Carlo programming techniques.

METHOD OF DELIVERY Face to face, Distance education etc.	In class face to face and in the laboratory			
USE OF INFORMATION AND	Use of ICT in teaching			
TECHNOLOGIES Use of ICT in Teaching in Laboratory	PC usage			
Education, in Communication with students	Open Source Software			
TEACHING ORGANIZATION The way and methods of teaching are described in detail	Activity	Semester Workload		
Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Bibliography study & analysis,	Practice Exercises that focus	26		
Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive teaching	on the application of			
Study visits, Study work, artwork, creation. $\lambda \pi$.	methodologies and analysis			
The student study hours for each lographic	of studies			
activity are indicated as well as the non-	Assignment Writing	20		
guided study hours so that the total workload at the semester level corresponds to the ECTS standards .	Project and Case Analysis	20		
	Independent Study	48		
	Total Course Load (25 hours per credit)	125		
STUDENT EVALUATION				
Description of the evaluation process	I Written final exam (60%) which includes			
Assessment Language Assessment Methods	Formative or Inferential Multiple Choice Test Shor			
Formative or Concluding, Multiple Choice	Answer Questions Essay Development Questions			
Test, Short Answer Questions, Essay				
Written Assignment, Report / Report, Oral	II. Project (40%) Report / Report on a selected relevant topic. Public Presentation of the work			
Examination, Public Presentation, Public				
Presentation, Others				
Explicitly defined assessment criteria are				
stated and If and where they are accessible to students.				

4. TEACHING AND LEARNING METHODS - EVALUATION

5. RECOMMENDED-BIBLIOGRAPHY

- Suggested Bibliography:

1. Tsanos, A., (1992) "Chaos from Theory to Applications". Plenum Press.

2. Farge, M., Hunt, J.C.R., Vassilicos, J.C. (1993) "Wavelets, Fractals, and Fourier Transforms". Claredon Press.

3. Box, G.E. and Jenkins, G.M. (1976) "Time Series Analysis: Forecasting and Control". Holden Day, San Francisco.

4. Brockwell, P.J., Davis, R.A. (1991) "Time Series: Theory and Methods". Springer, New York.

5. Diggle, P.J. (1990) "Time Series- A Biostatistical Introduction". Clarendon Press, Oxford.

6. Fuller, W.A. (1996) "Introduction to Statistical Time Series". John Wiley, New York. 7. GATE Manual, OpenGateCollaboration (2017),

http://www.opengatecollaboration.org/sites/default/files/GATE-UsersGuideV7.2.pdf (2017)

8. EGSnrcMP, PIRS 701,

http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/egsnrc_index.html (2017).

- Related scientific journals:

1. Chaos, Solitons and Fractals

- 2. Physical Review Letters
- 3. Physical Review E
- 4. Chaos
- 5. Journal of Time Series Analysis
- 6. Computational Statistics & Data Analysis