COURSE OUTLINE

(1) GENERAL					
SCHOOL	Engineering				
ACADEMIC UNIT	Department of Informatics and Computer Engineering				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	SEMESTER 8 th			l	
COURSE TITLE	Software Defined Networking				
INDEPENDENT TEACHI	NG ACTIVITIES				
if credits are awarded for separate	components of the cours	e,	WEEKLY		
e.g. lectures, laboratory exercise	es, etc. If the credits are		TEACHING		CREDITS
awarded for the whole of the course	e, give the weekly teaching HOURS				
hours and the tota	l credits				
	Lectur	es	3		
Laboratory Exercises		es		1	
Add rows if necessary. The organisation of teaching and the				4	5
teaching methods used are described in detail at (d).					
COURSE TYPE	Special background, skills development				
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:	Computer Networks I, II				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes (English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					
(2) LEARNING OUTCOMES					

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Software-based networking (SDN) is an innovative approach to managing network resources that is bringing about massive changes both in the field of research and in the analysis, design and implementation of the network systems of the future. By separating the control plane from the forwarding and data planes, SDN technology provides a global approach to today's complex network services resulting in the simplification of monitoring and network management. This new technology is already being implemented in the industry by major manufacturers of network infrastructure devices. At the same time, implementations based on open source software have been implemented in wide area networks and data centers. The student will have the possibility to delve into new technologies (SDN-NFV) based on the virtualization of processing and network resources, in the light of the requirements of network services in the context of new generation (5G) networks. Next, it will study methodologies for analysis, design and implementation of dynamic networks to support multiple users with different service requirements (QoS). In addition, in the context of research work, he will delve into issues related to quality of experience (QoE) requirements, such as congestion control, traffic monitoring/shaping, security. In particular, upon successful completion of the course the student will:

- have specialized knowledge and deep understanding of basic and advanced concepts of SDN architecture
- delve into the concepts of network and processing resource virtualization

• Understand the basic concepts of NFV	⁷ architecture				
 Understand the separation between t 	Understand the separation between the data/control planes				
 Analyze the operation of the OpenFlo switches) 	• Analyze the operation of the OpenFlow protocol and program network devices (sdn switches)				
Understand SDN Controller architectu	ıre				
Classify, compare and evaluate difference Controllers	 Classify, compare and evaluate different open source implementations of SDN Controllers 				
• Combine analysis, design and implementation methodologies of advanced systems based on the SDN architecture with the aim of satisfying specific requirements (QoS, QoE, security, etc.)					
• Combine knowledge and address com issues related to intelligent programm concisely his conclusions for the impl	pplex issues, as well as formulate judgments, on nable networks and communicate clearly and ementation of original ideas.				
General Competences					
Taking into consideration the general competent these appear in the Diploma Supplement and a course aim?	ences that the degree-holder must acquire (as appear below), at which of the following does the				
Search for, analysis and synthesis of data	Project planning and management				
and information, with the use of the necessary technology	Respect for difference and multiculturalism Respect for the natural environment				
Adapting to new situations	Showing social, professional and ethical				
Decision-making	responsibility and sensitivity to gender issues				
Working independently	Criticism and self-criticism				
Team work	Production of free, creative and inductive thinking				
Working in an international environment					
Working in an interdisciplinary	Others				
environment					
Production of new research ideas					

- Working independently
- Team work
- Production of free, creative and inductive thinking
- Production of new research ideas
- Working in an interdisciplinary environment

(3) SYLLABUS

1 Introduction

From traditional networks to software-defined networks, modern Data Centers and their requirements, autonomous and dynamic forwarding tables, SDN implementations and applications, resource virtualization in next-generation (5G) networks.

2. Software defined networks

Key Features of SDN Technology (Data/Control Layers, Operation, Devices, Software, Applications), IETF SDN Framework, Alternative SDN Approaches (API, Hypervisor-Based etc.)

3. OPEN FLOW

The OpenFlow protocol, open source software (Open Daylight/Floodlight Controllers, Mininet, OpenVSwitch), data traffic management (load balancing)

4. Alternative SDN technologies

Disadvantages of SDN architecture, approaches based on pre-existing protocols and APIs

5. Network Functions Virtualization (NFV)

Definitions NFV terminology, OPNFV, network services – Network Services (NS)/Virtual Network Functions (VNF), differences between SDN and NFV approaches

6. SDN in DATA CENTERS

Definition of Data Center, management-sharing of resources to multiple users in Data Center, Openstack, Docker, Kubernetes, VMware, SDN in Data Centers, VLANs, EVPN, VxLAN, NVGRE

7. SDN PROGRAMMING

Open source SDN implementations (programming languages, tools, simulators and applications), open source implementations (switches, controllers, applications)

8. Design SDN applications

Analysis - application categorization (eg active/proactive), implementation of applications using the NBI provided by the SDN controller.

	Eago to fago				
Eace-to-face Distance learning etc	Face-to-face				
	Laboratory oversizes in SD	N (Miningt Divorge			
COMMUNICATIONS TECHNOLOCY	Laboratory exercises in SDN (Mininet, Diverse				
COMMONICATIONS TECHNOLOGY	o classi electronic platform	for asynchronous			
Use of ICT in teaching laboratory	e-class: electronic platform for asynchronous				
ose of ICT in teaching, laboratory	distance learning				
education, communication with					
	A	Compation and the set			
The menner and methods of	Activity	Semester Workload			
The manner and methods of	Lectures	26			
teaching are described in detail.	Exercices	13			
Lectures, seminars, laboratory	Lab Exercises	13			
practice, fieldwork, study and	Project	33			
analysis of bibliography, tutorials,	Study	40			
placements, clinical practice, art					
workshop, interactive teaching,					
educational visits, project, essay					
writing, artistic creativity, etc.					
	Course total	125			
The student's study hours for each					
learning activity are given as well as					
the hours of non-directed study					
according to the principles of the					
ECTS					
STUDENT PERFORMANCE	I. Final written exam in theory (70%) which includes:				
EVALUATION	- Short answer questions that	t assess understanding of key			
Description of the evaluation	concepts of optical communications networks				
procedure	- Solving problems related to	system performance			
	analysis				
Language of evaluation, methods of	II. Evaluation of individual an	id group assignments – lab			
evaluation, summative or	exercises (30%)				
conclusive, multiple choice					
questionnaires, short-answer					
questions, open-ended questions,					
problem solving, written work,					
essay/report, oral examination,					
public presentation, laboratory					
work, clinical examination of					
patient, art interpretation, other					
Specifically-defined evaluation					
criteria are given, and if and where					
they are accessible to students.					
(5) ATTACHED BIBLIOGRAPHY					

(4) TEACHING and LEARNING METHODS - EVALUATION

- Suggested bibliography:

- 1. Paul Goransson and Chuck Black, —Software Defined Networks: A Comprehensive Approach, First Edition, Morgan Kaufmann, 2014.
- 2. Thomas D. Nadeau, Ken Gray, -SDN: Software Defined Networks, O'Reilly Media, 2013.

- Related academic journals:

1. Computer Networks, Elsevier

- 2. IEEE/ACM Transaction on Networking
- 3. IEEE Journal of Communications and Networks