COURSE OUTLINE

(1) GENERAL					
SCHOOL	Engineering				
ACADEMIC UNIT	Informatics and Computer Engineering				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE		SEMESTER 7th			
COURSE TITLE	Computer G	raphics			
INDEPENDENT TEACHI	NG ACTIVITI	ES			
if credits are awarded for separate components of the course,			WEEKLY		
e.g. lectures, laboratory exercises, etc. If the credits are			TEACHING	CR	EDITS
awarded for the whole of the course	se, give the weekly teaching HOURS				
hours and the tota	al credits				
Lectures		2			
Laboratory Work		2			
Add rows if necessary. The organisation of teaching and the			4		5
teaching methods used are described in detail at (d).					
COURSE TYPE	Scientific Ar	ea, Skills Devel	lopment		
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes (in English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course represents the fundamental course concerning the theoretical concepts and the relevant technologies of Computer Graphics and Image Synthesis.

The course material aims to:

(a) Familiarize students with the fundamental theoretical concepts, their position and their role in the overall computer graphics production pipeline. These include the fundamental concepts of light and color spaces and models, the relevant linear algebra topics of transformations, projections and three-dimensional modeling, the fundamental algorithms for drawing, antialiasing, clipping, hidden surface elimination and triangulation, the fundamental algorithms for parametric curved line and surface drawing as well as the fundamental algorithms for texture and lighting.

(b) Familiarize students in a practical manner, through computer laboratory exercises and projets, with the development of graphics applications where they are expected to implement versions of the aforementioned concepts in modern technological platforms, understanding the later, both in terms of basic hardware architecture, as well as in terms of software and the different degrees of abstraction and efficiency they offer.

Upon successful completion of the course, the student:

• Knows the fundamental theoretical concepts of Computer Graphics, their position and

their role in the overall graphics production pipeline and image synthesis

- Has the ability to design and develop professional graphics applications utilizing modern technical platforms
- Understands the differences, the advantages and disadvantages of the capabilities of the available technological solutions related to Computer Graphics and he/she act in a consulting role towards their choice
- Has the ability to follow the evolution and to understand and appreciate the novel capabilities offered by the technological and theoretical progress in the area of Computer Graphics
- Has competent background in order to attend courses with content concerning advanced Computer Graphics concepts both at theoretical as well as technological level.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism
necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive thinking
Working in an international environment	
Working in an interdisciplinary	Others
environment	
Production of new research ideas	

Individual Work

- Team Work
- Research, analyze and synthesize information and data, also with the use of necessary technologies

(3) SYLLABUS

- History and Basic Computer Graphics Production and Image Synthesis pipeline
- Light, Color Gamuts and Models
- Relevant Linear Algebra Topics
- Transformations
- Three-dimensional Modeling
- Projection and Object, World, Observer and Screen Spaces
- Drawing and Antialiasing Algorithms
- Clipping and Hidden Surface Elimination Algorithms
- Triangulation Algorithms
- Parametric Curved Lines and Surfaces
- Polygons
- Texture and Lighting Management
- Scene Graphs and Declarative Modeling
- Computer Graphics Technologies: programming languages
- Computer Graphics Technologies: software applications
- Computer Graphics Technologies: basic hardware architecture

(-)					
DELIVERY	Face-to-face in classroom				
Face-to-face, Distance learning, etc.	Face-to-face in computer laboratory				
USE OF INFORMATION AND	WebGL API.				
COMMUNICATIONS TECHNOLOGY	GLSL				
	lavascrint				
Use of ICT in teaching, laboratory	Compatible Browsers				
education, communication with	Debugging and Matrix Maninulation Libraries				
students	Support of learning process through the e-learning platform of the Department				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of	Lectures	26			
teaching are described in detail.	Laboratory Exercise	26			
Lectures, seminars, laboratory	aiming to familiarize with				
practice, fieldwork, study and	modern graphics				
analysis of bibliography, tutorials,	technologies				
placements, clinical practice, art	Development Project of	37			
workshop, interactive teaching,	Computer Graphics				
educational visits, project, essay	application				
writing, artistic creativity, etc.	Individual Study	36			
The student's study hours for each	Course Total (25 hours of	125			
learning activity are given as well as	work load per credit unit)				
the hours of non-directed study					
according to the principles of the					
ECTS					
STUDENT PERFORMANCE					
EVALUATION	1. Written final examination (50%) which includes:				
Description of the evaluation	Multiple Choice questions				
procedure	Problem Solving				
	Comparative Evaluation of theory elements				
Language of evaluation, methods of	Short Answer Questions				
conclusive multiple choice	• Other				
questionnaires short-answer					
questions open-ended questions	2. Laboratory Exercise (25%)				
problem solving, written work.	Laboratory Work Desumentation (Des	ant			
essay/report, oral examination,	Documentation/Report				
public presentation, laboratory	• Other				
work, clinical examination of					
patient, art interpretation, other	3. Project (25%)				
	Laboratory Work				
Specifically-defined evaluation	Project Document				
criteria are given, and if and where	Documentation / Report				
they are accessible to students.	• Other				
(5) ATTACHED BIBLIOGRAPHY					

(4) TEACHING and LEARNING METHODS - EVALUATION

- Suggested bibliography:
- 1. Γραφικά και Προγραμματισμός WebGL, Μπαρδής Γ., 2022.
- 2. Γραφικά και Οπτικοποίηση, Θεοχάρης Θ., Πλατής Ν., Παπαϊωάννου Γ., Πατρικαλάκης Ν., 2010.
- 3. John F. Hughes, Andries Van Dam, James D. Foley, Morgan McGuire, Steven K. Feiner, David F. Sklar, Kurt Akeley, Computer Graphics: Principles and Practice, Addison-Wesley, 2014.
- 4. Professional WebGL Programming: Developing 3D Graphics for the Web, Andreas Anuru, WROX, 2012

- 5. Plemenos D., Miaoulis G., (Eds.) Intelligent Scene Modeling Information Systems, Springer, 2009.
- 6. Beginning WebGL for HTML5, Brian Danchilla, Springer, 2012.
- 7. Foley J.D., van Dam A., Feiner S.K., Hughes J.F. Phillips R.L., Introduction to Computer Graphics, Addison-Wesley, 1994.
- 8. K.Matsuda, R.Lea, WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL, Addison-Wesley, 2013.
- 9. Γραφικά με ηλεκτρονικό υπολογιστή, Στυλιάδης Αθανάσιος Δ., 1999.

- Related academic journals:

- 1. ACM Transactions on Graphics
- 2. IEEE Transactions on Visualization and Computer Graphics
- 3. The Visual Computer, Springer