VLSI INTEGRATED CIRCUIT DESIGN

1. GENERAL

1. GENERAL					
SCHOOL	ENGINEER				
SECTION	INFORMATICS AND COMPUTER ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	SEMESTER OF STUDY 7th, 9th				
COURSE TITLE	VLSI INTEGRATED CIRCUIT DESIGN				
INDEPENDENT TEACHING ACTIVITIES in case the credits are awarded in distinct parts of the course e.g. Lectures, Laboratory Exercises, etc. If the credits are awarded uniformly for the entire course, indicate the weekly teaching hours and the total number of credits			WEEKLY HOUR TEACHING	S CREDIT UNITS	
	Lectures		2		
Practice exercises			1		
Lal	Laboratory exercises				
Add rows if needed. The organization of teaching and the teaching methods used are described In detail at 4.		4	5		
COURSE TYPE Background, General Knowledge, Scientific Area, Development Skill	Scientific Area, Skills Development				
PREREQUISITES COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATION:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes (in English)				
ONLINE COURSE PAGE (URL)					

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

Consult Appendix A

- Description of the Level of Learning Outcomes for each course of study according to the European Higher Education Area Qualifications Framework
- Descriptors of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Summary Guide for writing Learning Outcomes

The aim of the course is to complete the students' knowledge in the field of circuit design of very high scale integration (VLSI) technology.

Upon completion of the course students will be able to:

- They design combined circuits with MOS technology transistors
- Analyze the operation of the MOS transistor
- Design circuits using consumption reduction techniques
- They design integrated high-scale integration systems using hardware description languages.
- Check the correct operation of VLSI circuits

General Skills

Taking into account the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and listed below) which of them is the subject aimed at?

Search, analysis and synthesis of data and information, using the necessary technologies Adapting to new situations	Project planning and management Respect for diversity and multiculturalism Respect for the natural environment Demonstrate social, professional and ethical
Decision making	responsibility and sensitivity to gender issues Criticism
Autonomous work	and self-criticism
Teamwork	Promotion of free, creative and inductive thinking
Working in an international	
environment Working in an	
interdisciplinary environment	
Generating new research ideas	
Autonomous Work	
Teamwork	

3. COURSE CONTENT

- Design of circuits at the transistor level
 - VLSI integrated circuit manufacturing technologies
 - Circuit design techniques for low consumption
 - VLSI system control
 - Introduction to the use of CAD drawing tools (MAGIC), Logic (IRSIM) and temporal (CaZm/H-SPICE) emulation of VLSI circuits
 - Introduction to the use of CAD circuit drawing tools (Synopsys, Mentor Graphics, Cadence)

4. TEACHING AND LEARNING METHODS - ASSESSMENT

HOW TO DELIVER Face-to-face, Remote education , etc.	Face-to-face (in class)			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in Teaching, in Laboratory Training, in Communication with students	Support of the learning process through the University's e-learning platform			
TEACHING ORGANIZATION The way and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliography Study & Analysis, Tutorial. Practice		Activity	Semester Workload	
		Lectures	26	
		Laboratory Exercises	13	
(placement), Clinical Practicum, Art		Practice Exercises	13	
Workshop, Interactive teaching, Educational		Independent Study	73	
visits, Project preparation, Writing of work / assignments, Artistic creation, etc.		Course Total (25 hours of load working per credit unit)	125	
The student's study hours for each learning activity as well as the hours of unguided study are listed so that the total workload at semester level corresponds to ECTS standards				

STUDENT EVALUATION

Description of the evaluation process

Assessment Language, Assessment Methods,
Formative or Inferential, Multiple Choice
Test, Short Answer Questions, Essay
Development Questions, Problem Solving,
Written Assignment, Report / Report, Oral
Examination, Public Presentation, Laboratory
Work, Clinical Patient Examination,
Artistic Performance, Other / Other

Explicitly defined assessment criteria are indicated and if and where they are accessible to students.

- I. Written final exam (80%) including:
- Multiple choice questions
- Short answer questions
- Solving problems related to the design of VLSI systems
- II. Practice Exercises (10%)
- III. Laboratory exercises (10%)

For successful completion, a grade of at least 5/10 in the Written Final Exam is required.

5. RECOMMENDED-BIBLIOGRAPHY

- Suggested teaching aids :
- 1. CMOS VLSI Integrated Circuit Design Edition: 4th ed./2010, Authors: Vest Neil H., Eshraghian Kamran, Dimitrios Sountris, K. Pekmestzi
- 2. Analysis and design of digital integrated circuits CMOS, Kang Sung Mo (Steve),Leblebici Yusuf
- 3. DIGITAL INTEGRATED CIRCUITS: A DESIGN APPROACH, JAN MR. Rabaey, ANANTHA CHANDRAKASAN, BORIVOJE NIKOLIC
- 4. Analysis and design of digital integrated circuits, Hodges D., Jackson H.