COURSE OUTLINE

(1) GENERAL

(I) GENERAL					
SCHOOL	School of Engineering				
ACADEMIC UNIT	Department of Informatics and Computer Science				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	SEMESTER 7, 9				
COURSE TITLE	Optimization				
INDEPENDENT TEACHI	NG ACTIVITI	ES			
if credits are awarded for separate	components o	of the course,	WEEKLY		
e.g. lectures, laboratory exercise	es, etc. If the c	redits are	TEACHING CREDITS HOURS		
awarded for the whole of the course		ekly teaching			
hours and the tota	al credits				
		Lectures	2		
	(Class exercises	2		
Add rows if necessary. The organisa			4	5	
teaching methods used are described	d in detail at (d).			
COURSE TYPE	Special Background, Skills development				
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	No				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course, the students will be familiar with the basic concepts of optimization and be able to

- model optimization problems
- use software to solve real world problems
- implement algorithm taught in the course
- understand scientific literature on the subject

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data
and information, with the use of the
necessary technology
Respect for the natural environment
Adapting to new situations
Decision-making
Working independently
Team work

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical
responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking

Working in an international environment
Working in an interdisciplinary
environment
Production of new research ideas

......

- Autonomous work
- Generating new research ideas
- Promotion of free, creative and inductive thinking

(3) SYLLABUS

The concept of Optimization. Examples. Review of Linear Algebra elements and functions. Optimization through derivatives. The Linear Problem (LP) and its extension to the Integer Problem (IP): general description and difficulties of solving (classes of complexity of the problems). The Dual problem and the necessary and sufficient optimality conditions of the LP (Karush, Kuhn, Tucker conditions) - introduction to the theory of convex sets and functions. Algorithmic solution of the LP – the Simplex method. Economic Interpretation of Simplex Tableau Elements. Special cases and addressing them through the Simplex algorithm.- multiple optimal solutions, degenerate points, empty solution space. The Simplex method with bounds to variables. Sensitivity analysis, introduction of new variables and constraints, parametric programming. Optimization and Networks. Discrete Optimization

(4) TEACHING and LEARNING METHODS - EVALUATION

(4) TEACHING and LEARNING MET	NING METHODS - EVALUATION			
DELIVERY	Lectures (live)			
Face-to-face, Distance learning, etc.				
USE OF INFORMATION AND	Eclass platform for communicating with the students and			
COMMUNICATIONS TECHNOLOGY	publishing slides, lecture notes and exercises with			
	solutions.			
Use of ICT in teaching, laboratory				
education, communication with				
students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	39		
teaching are described in detail.	Class exercises	26		
Lectures, seminars, laboratory	Home study	60		
practice, fieldwork, study and				
analysis of bibliography, tutorials,				
placements, clinical practice, art				
workshop, interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
	Course total	125		
The student's study hours for each	Course total	123		
learning activity are given as well as				
the hours of non-directed study				
according to the principles of the				
ECTS				
STUDENT PERFORMANCE				
EVALUATION	Final exam			
Description of the evaluation				
procedure				
Language of evaluation, methods of				
evaluation, summative or				
conclusive, multiple choice				
questionnaires, short-answer				
questions, open-ended questions,				
problem solving, written work,				
essay/report, oral examination,				

public presentation, laboratory work, clinical examination of patient, art interpretation, other
pecifically-defined evaluation
criteria are given, and if and where
they are accessible to students.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
 - 1. M. Padberg, Linear Optimization and Extensions, Springer,1999.
 - 2. M. Bazaraa, J.J. Jarvis, HD. Sherali, Linear Programming and network flows, John Wiley, 1990.
 - 3. R. Ahuja, T. Magnanti, J. Orlin, Network Flows, Prentice Hall, 1993.
 - 4. B. Korte, J. Vygen, Combinatorial Optimization, Springer 2000.
 - 5. R. Garfinkel, G. Nemhauser, Integer Programming, John Wiley and Sons, 1972.
 - 6. A. Schrijver, Theory of Linear and Integer Programming, John Wiley, 1986.
- Related academic journals:
 - Mathematical Programming
 - Discrete Optimization