COURSE OUTLINE

(1) GENERAL			
SCHOOL	ENGINEERING		
ACADEMIC UNIT	Informatics and Computer Engineering		
LEVEL OF STUDIES	Undergraduate		
COURSE CODE	ICE1-4006	SEMESTER	4 th
COURSE TITLE	Signals and Systems		
INDEPENDENT TEACHI	NG ACTIVITIES		
if credits are awarded for separate	components of the course,	WEEKLY	
e.g. lectures, laboratory exercise	es, etc. If the credits are	TEACHING	CREDITS
awarded for the whole of the cours	e, give the weekly teaching	HOURS	
hours and the tot	al credits		
Lectures 2		2	
Tut	orial and problems solving	1	
	Computer Laboratory 1		
Add rows if necessary. The organisa	ation of teaching and the 4 5		5
teaching methods used are describe	ed in detail at (d).		
COURSE TYPE		•	•
general background,			
special background, specialised	Specialised general knowledge (special background)		
general knowledge, skills		0 (1	0 ,
development			
PREREQUISITE COURSES:	Mathematical Analysis		
LANGUAGE OF INSTRUCTION	Greek		
and EXAMINATIONS:			
IS THE COURSE OFFERED TO	Yes (in English)		
ERASMUS STUDENTS			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/CS205/		
(2) LEARNING OUTCOMES			
Learning outcomes			
The course learning outcomes specific knowledge skills and competences of an appropriate			
level, which the students will acquir	e with the successful compl	etion of the cou	urse are described
Consult Appendix A	F		
• Description of the level of learning outcomes for each qualifications cycle according to the			
Oualifications Framework of the	European Higher Education	n Area	
• Descriptors for Levels 6, 7 & 8 o	f the European Qualification	s Framework f	or Lifelong
Learning and Annendix R			
Cuidelines for writing Learning Outcomes			
Upon successful completion of the c	ourse the student must		
 describe a signal in a mather 	natical way		
categorize signals and describe their properties			
categorize signals and manage signals on the computer			
• analyze, design and manage signals on the computer			
analyze and classify systems based on their properties (linearity, time invariance,			
causality, memory, stability,	net (LTI) quatoma with aquat	iona with blog	le diagnama with
• represent linear time-invariant (LTI) systems with equations, with block diagrams, with			
their impulse response or with their transfer function and understand the equivalence o			ine equivalence of
these representations	volution and annuaciate its is	n n o uton oo in tl	a a analysia of LTL
 explain the operation of convolution and appreciate its importance in the analysis of LT. systems 			ie analysis of L11
 understand the relationship between the time and frequency domains and appreciate th 			
importance of Fourier analysis	sis	ency domains c	and uppi colate th
understand the convolution theorem and the basic properties of Fourier Transform			
 understand the convolution theorem and its use for solving differential equations and 			
Detraininal with Laplace fransform and its use for solving unreferitual equations and analyzing LTL systems			
anaryzing LTT Systems	Ponyironmont and the store	l processing to	albay
De able to utilize the MATLA	B environment and the signa	ii processing to	XODIDOX
General Competences			

Taking into consideration the general competences that the degree-holder must acquire (as

these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data Project planning and management and information, with the use of the Respect for difference and multiculturalism necessary technology Respect for the natural environment Showing social, professional and ethical Adapting to new situations responsibility and sensitivity to gender issues Decision-making Working independently Criticism and self-criticism Production of free, creative and inductive thinking Team work Working in an international environment Working in an interdisciplinary Others... environment Production of new research ideas Search for, analysis and synthesis of data and information, with the use of the necessary • technology **Decision-making** • Team work Production of free, creative and inductive thinking (3) SYLLABUS Introduction. Signals and systems: fundamental concepts. Linear Time-Invariant (LTI)

Introduction. Signals and systems: fundamental concepts. Linear Time-Invariant (LTI) Systems. Impulse response. Convolution. Correlation. Block diagrams. Representation of systems with differential equations. Fourier series – Line spectra. Fourier transform – Spectral density. Frequency Response. Fourier transform applications - Filtering. Laplace transform. Transfer function. Solution of differential equations with Fourier and Laplace transforms.

Lab in MATLAB environment using the Signal Processing toolbox.

(4) TEACHING and LEARNING METHODS - EVALUATION

	ODD HIMEONIN		
DELIVERY	Face-to-face		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	Use of web-based asynchronous elearning systems to		
COMMUNICATIONS TECHNOLOGY	support the educational material (notes, powerpoint		
	presentations, self assignmen	its, past exams etc.) and	
Use of ICT in teaching, laboratory	examinations.		
education, communication with	Use of email and announcements in elearning system to		
students	communicate and inform stu	dents.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	26	
teaching are described in detail.	Tutorials	13	
Lectures, seminars, laboratory	Computer Laboratory	13	
practice, fieldwork, study and	Written assignments	21	
analysis of bibliography, tutorials,	Self study	52	
placements, clinical practice, art	Course total	125	
workshop, interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
The student's study hours for each			
learning activity are given as well as			
the hours of non-directed study			
according to the principles of the			
ECTS			
STUDENT PERFORMANCE			
EVALUATION	I. Final written exa	am (70%) which contains :	
Description of the evaluation	- Short-answer questions		
procedure	 Problem sol 	ving	

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	 II. Computer laboratory assignments and final laboratory examination (30%) The exam material and the assessment process are made known to students in the lecture hall, the laboratory and the e-learning platform of the course.
Specifically-defined evaluation criteria are given, and if and where they are accessible to students. (5) ATTACHED BIBLIOGRAPHY	
- Suggested bibliography:	

 Παλαμίδης Αλ., Βελώνη Αν., Σήματα & Συστήματα με MATLAB, Σύγχρονη Εκδοτική, 2010.
 Φωτόπουλος Π., Παλαμίδης Αλ., Βελώνη Αν., Σήματα και Συστήματα, Σύγχρονη Εκδοτική, Αθήνα, 2019

3. Ziemer R. E., Tranter W. H., Fannin D. R., Signals and Systems: Continuous and Discrete, 4th Ed., Pearson Education, 2014.

4. Balmer L., Signals and Systems, 2nd Ed., Prentice Hall, 1997.

5. Girod B., Rabenstein R., Stenger A., Signals and Systems, Wiley, 2001.

6. Hsu H. P., Schaum's Outline of Signals and Systems, 2nd Ed., 2010.

7. Θεοδωρίδης Σ., Μπερμπερίδης Κ., Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων, Εκδόσεις Τυποθήτω, 2002.

8. Haykin S., Van Veen B., Signals and Systems, John Wiley and Sons, 1999.

9. Oppenheim A.V., Willsky A.S., Nawab S.H., Signals and Systems, 2nd ed., Prentice Hall, 1996.